Processing math: 100%

Équations du type ax+b=cx+d

Équations du type ax+b=cx+d

Equations du type ax+b=cx+d

 

Définition

 

Résoudre une équation revient à trouver la valeur de l’inconnue x pour que l’égalité soit vérifiée. 

On peut ajouter ou soustraire un même nombre de part et d’autre du signe de l’égalité sans changer l’égalité. 

On peut multiplier ou diviser par un même nombre non nul de part et d’autre du signe de l’égalité sans changer l’égalité. 

 

Méthode

 

On va, à travers un exemple, résoudre une équation du premier degré.

Le premier degré réfère à la puissance 1 de x=x1

Résolvons par exemple : 5x+2=3x5

 

1) On regroupe du même côté l’inconnue et de l’autre côté les nombres.

Pour se débarrasser du terme 3x dans le membre de droite, on soustraie 3x à chaque membre.

5x3x+2=3x3x5

2x+2=5

 

2) Pour enlever le nombre dans le membre de gauche, on soustraie 2 de part et d’autre de l’égalité.

2x+22=52

2x=7

3) Enfin, pour trouver la valeur de x, on divise par le nombre en facteur devant x de chaque côté de l’égalité.

2x2=72

Donc x=72.

La solution est donc

x=72.

 

Remarque

 

Pour aller plus loin, on peut se demander combien de solution on peut avoir à ce type d’équation.

L’exemple précédent montre qu’il est possible d’avoir une seule solution.

Il est aussi possible d’avoir une infinité de solutions, voire aucune.

Exemple avec une infinité de solutions:

7x+2=2x+29x

7x+2=+27x

7x+7x+2=+27x+7x

0x+2=2

0x+22=22

0x=0

On cherche donc un nombre qui multiplié par 0 donne 0. Or le produit de tout nombre par 0 est égal à 0

Ainsi, tous les nombres sont solutions de cette équation.

 

Exemple sans solution : 

7x+3=2x+29x

7x+3=+27x

7x+7x+3=+27x+7x

0x+3=2

0x+33=23

0x=1

Or le produit de tout nombre par 0 est égal à 0 et ne peut donc être égal à 1.

Ainsi, il n’y a pas de solution à cette équation. 

Notre guide gratuit pour réussir son orientation post bac 2023

X
Ce site utilise des cookies et vous donne le contrôle sur ceux que vous souhaitez activer